81 research outputs found

    Testing the distance duality relation with present and future data

    Full text link
    The assumptions that "light propagates along null geodesics of the spacetime metric" and "the number of photons is conserved along the light path" lead to the distance duality relation (DDR), η=DL(z)(1+z)−2/DA(z)=1\eta = D_L(z) (1 + z)^{-2}/D_A(z) = 1, with DL(z)D_L(z) and DA(z)D_A(z) the luminosity and angular diameter distances to a source at redshift zz. In order to test the DDR, we follow the usual strategy comparing the angular diameter distances of a set of clusters, inferred from X - ray and radio data, with the luminosity distance at the same cluster redshift using the local regression technique to estimate DL(z)D_L(z) from Type Ia Supernovae (SNeIa) Hubble diagram. In order to both strengthen the constraints on the DDR and get rid of the systematics related to the unknown cluster geometry, we also investigate the possibility to use Baryon Acoustic Oscillations (BAO) to infer DA(z)D_A(z) from future BAO surveys. As a test case, we consider the proposed Euclid mission investigating the precision can be afforded on η(z)\eta(z) from the expected SNeIa and BAO data. We find that the combination of BAO and the local regression coupled allows to reduce the errors on ηa=dη/dz∣z=0\eta_a = d\eta/dz|_{z = 0} by a factor two if one η0=η(z=0)=1\eta_0 = \eta(z = 0) = 1 is forced and future data are used. On the other hand, although the statistical error on η0\eta_0 is not significantly reduced, the constraints on this quantity will be nevertheless ameliorated thanks to the reduce impact of systematics.Comment: 10 pages, 1 figure, 1 table, accepted for publication on Physical Review

    ELT requirements for studies of galaxy formation/evolution and cosmology

    Get PDF

    Euclid: Superluminous supernovae in the Deep Survey

    Get PDF
    Context. In the last decade, astronomers have found a new type of supernova called ‘superluminous supernovae’ (SLSNe) due to their high peak luminosity and long light-curves. These hydrogen-free explosions (SLSNe-I) can be seen to z ∼ 4 and therefore, offer the possibility of probing the distant Universe. Aims. We aim to investigate the possibility of detecting SLSNe-I using ESA’s Euclid satellite, scheduled for launch in 2020. In particular, we study the Euclid Deep Survey (EDS) which will provide a unique combination of area, depth and cadence over the mission. Methods. We estimated the redshift distribution of Euclid SLSNe-I using the latest information on their rates and spectral energy distribution, as well as known Euclid instrument and survey parameters, including the cadence and depth of the EDS. To estimate the uncertainties, we calculated their distribution with two different set-ups, namely optimistic and pessimistic, adopting different star formation densities and rates. We also applied a standardization method to the peak magnitudes to create a simulated Hubble diagram to explore possible cosmological constraints. Results. We show that Euclid should detect approximately 140 high-quality SLSNe-I to z ∼ 3.5 over the first five years of the mission (with an additional 70 if we lower our photometric classification criteria). This sample could revolutionize the study of SLSNe-I at z > 1 and open up their use as probes of star-formation rates, galaxy populations, the interstellar and intergalactic medium. In addition, a sample of such SLSNe-I could improve constraints on a time-dependent dark energy equation-of-state, namely w(a), when combined with local SLSNe-I and the expected SN Ia sample from the Dark Energy Survey. Conclusions. We show that Euclid will observe hundreds of SLSNe-I for free. These luminous transients will be in the Euclid data-stream and we should prepare now to identify them as they offer a new probe of the high-redshift Universe for both astrophysics and cosmology

    Reconsidering photometric estimation of local star formation environment and its correlation with Type Ia Supernova luminosity

    Full text link
    Recent studies on the environmental dependence of Type Ia supernova (SN Ia) luminosity focus on the local environment where the SN exploded, considering that this is more directly linked to the SN progenitors. However, there is a debate about the local environmental, specifically local star formation rate (SFR), dependence of the SN Ia luminosity. A recent study claims that the dependence is insignificant (0.051±0.0200.051 \pm 0.020 mag; 2.6σ2.6\sigma), based on the local SFR measurement by fitting local ugrizyugrizy photometry data. However, we find that this photometric local SFR measurement is inaccurate. We argue this based on the theoretical background of SFR measurement and the methodology used to make that claim with their local ugrizyugrizy photometry data, especially due to a limited range of extinction parameters used when fitting the data. Therefore, we re-analyse the same host galaxies with the same fitting code, but with more physically motivated extinction treatments and global ugrizugriz photometry of host galaxies. We estimate global stellar mass and SFR. Then, local star formation environments are inferred by using the method which showed that SNe Ia in globally passive galaxies have locally passive environments, while those in globally star-forming low-mass galaxies have locally star-forming environments. We find that there is significant local environmental dependence of SN Ia luminosities: SNe Ia in locally star-forming environments are 0.072±0.0210.072\pm0.021 mag (3.4σ3.4\sigma) fainter than those in locally passive environments, even though SN Ia luminosities have been further corrected by the BBC method that reduces the size of the dependence.Comment: 10 pages, 7 figures, 3 tables and 1 appendix table containing data we used; accepted for publication in MNRA

    Late-Time Spectral Observations of the Strongly Interacting Type Ia Supernova PTF11kx

    Get PDF
    PTF11kx was a Type Ia supernova (SN Ia) that showed time-variable absorption features, including saturated Ca II H&K lines that weakened and eventually went into emission. The strength of the emission component of H{\alpha} increased, implying that the SN was undergoing significant interaction with its circumstellar medium (CSM). These features were blueshifted slightly and showed a P-Cygni profile, likely indicating that the CSM was directly related to, and probably previously ejected by, the progenitor system itself. These and other observations led Dilday et al. (2012) to conclude that PTF11kx came from a symbiotic nova progenitor like RS Oph. In this work we extend the spectral coverage of PTF11kx to 124-680 rest-frame days past maximum brightness. These spectra of PTF11kx are dominated by H{\alpha} emission (with widths of ~2000 km/s), strong Ca II emission features (~10,000 km/s wide), and a blue "quasi-continuum" due to many overlapping narrow lines of Fe II. Emission from oxygen, He I, and Balmer lines higher than H{\alpha} is weak or completely absent at all epochs, leading to large observed H{\alpha}/H{\beta} intensity ratios. The broader (~2000 km/s) H{\alpha} emission appears to increase in strength with time for ~1 yr, but it subsequently decreases significantly along with the Ca II emission. Our latest spectrum also indicates the possibility of newly formed dust in the system as evidenced by a slight decrease in the red wing of H{\alpha}. During the same epochs, multiple narrow emission features from the CSM temporally vary in strength. The weakening of the H{\alpha} and Ca II emission at late times is possible evidence that the SN ejecta have overtaken the majority of the CSM and agrees with models of other strongly interacting SNe Ia. The varying narrow emission features, on the other hand, may indicate that the CSM is clumpy or consists of multiple thin shells.Comment: 12 pages, 7 figures, 1 table, re-submitted to Ap

    Evolved Galaxies at z > 1.5 from the Gemini Deep Deep Survey: The Formation Epoch of Massive Stellar Systems

    Get PDF
    We present spectroscopic evidence from the Gemini Deep Deep Survey (GDDS) for a significant population of color-selected red galaxies at 1.3 < z < 2.2 whose integrated light is dominated by evolved stars. Unlike radio-selected objects, the z > 1.5 old galaxies have a sky density > 0.1 per sq. arcmin. Conservative age estimates for 20 galaxies with z > 1.3; = 1.49, give a median age of 1.2 Gyr and = 2.4. One quarter of the galaxies have inferred z_f > 4. Models restricted to abundances less than or equal to solar give median ages and z_f of 2.3 Gyr and 3.3, respectively. These galaxies are among the most massive and contribute approximately 50% of the stellar mass density at 1 < z < 2. The derived ages and most probable star formation histories suggest a high star-formation-rate (300-500 solar masses per year) phase in the progenitor population. We argue that most of the red galaxies are not descendants of the typical z=3 Lyman break galaxies. Galaxies associated with luminous sub-mm sources have the requisite star formation rates to be the progenitor population. Our results point toward early and rapid formation for a significant fraction of present day massive galaxies.Comment: 12 pages, 2 figures, 1 table, Accepted for publication, ApJ Letter

    Cosmic Star Formation History and its Dependence on Galaxy Stellar Mass

    Full text link
    We examine the cosmic star formation rate (SFR) and its dependence on galaxy stellar mass over the redshift range 0.8 < z < 2 using data from the Gemini Deep Deep Survey (GDDS). The SFR in the most massive galaxies (M > 10^{10.8} M_sun) was six times higher at z = 2 than it is today. It drops steeply from z = 2, reaching the present day value at z ~ 1. In contrast, the SFR density of intermediate mass galaxies (10^{10.2} < M < 10^{10.8} M_sun) declines more slowly and may peak or plateau at z ~ 1.5. We use the characteristic growth time t_SFR = rho_M / rho_SFR to provide evidence of an associated transition in massive galaxies from a burst to a quiescent star formation mode at z ~ 2. Intermediate mass systems transit from burst to quiescent mode at z ~ 1, while the lowest mass objects undergo bursts throughout our redshift range. Our results show unambiguously that the formation era for galaxies was extended and proceeded from high to low mass systems. The most massive galaxies formed most of their stars in the first ~3 Gyr of cosmic history. Intermediate mass objects continued to form their dominant stellar mass for an additional ~2 Gyr, while the lowest mass systems have been forming over the whole cosmic epoch spanned by the GDDS. This view of galaxy formation clearly supports `downsizing' in the SFR where the most massive galaxies form first and galaxy formation proceeds from larger to smaller mass scales.Comment: Accepted for publication in ApJ

    The Type Ia supernovae rate with Subaru/XMM-Newton Deep Survey

    Full text link
    We present measurements of the rates of high-redshift Type Ia supernovae derived from the Subaru/XMM-Newton Deep Survey (SXDS). We carried out repeat deep imaging observations with Suprime-Cam on the Subaru Telescope, and detected 1040 variable objects over 0.918 deg2^2 in the Subaru/XMM-Newton Deep Field. From the imaging observations, light curves in the observed i′i'-band are constructed for all objects, and we fit the observed light curves with template light curves. Out of the 1040 variable objects detected by the SXDS, 39 objects over the redshift range 0.2<z<1.40.2 < z < 1.4 are classified as Type Ia supernovae using the light curves. These are among the most distant SN Ia rate measurements to date. We find that the Type Ia supernova rate increase up to z∼0.8z \sim 0.8 and may then flatten at higher redshift. The rates can be fitted by a simple power law, rV(z)=r0(1+z)αr_V(z)=r_0(1+z)^\alpha with r0=0.20−0.16+0.52r_0=0.20^{+0.52}_{-0.16}(stat.)−0.07+0.26^{+0.26}_{-0.07}(syst.)×10−4yr−1Mpc−3\times 10^{-4} {\rm yr}^{-1}{\rm Mpc}^{-3}, and α=2.04−1.96+1.84\alpha=2.04^{+1.84}_{-1.96}(stat.)−0.86+2.11^{+2.11}_{-0.86}(syst.).Comment: 21 pages, 16 figures, accepted to PAS
    • …
    corecore